
A shader unit
Architecture, OpenGL-specific aspects, simulator implemented

using SystemC, adaptions for embedded systems

Philipp Klaus Krause

January 22, 2008



Gliederung

1 Introduction

2 Architecture

3 Implementing OpenGL

4 Adaptions for use in embedded systems



Gliederung

1 Introduction

2 Architecture

3 Implementing OpenGL

4 Adaptions for use in embedded systems



OpenGL pipeline



Shaders

Replace parts of the graphics pipeline to gain flexibility

Written in special-purpose languages like GLSL

Executed on special-purpose, programmable processors called
shader units

Unified shaders: Shader units can be dynamically assigned to
different shader types

Different architectures in use



Goals

Architecture of a shader unit (for OpenGL shaders)

Selected aspects of hardware implementation

Adaptions for embedded systems

Cycle-accurate simulator written in SystemC

Assembler



Gliederung

1 Introduction

2 Architecture

3 Implementing OpenGL

4 Adaptions for use in embedded systems



Processor and parts of its environment



Execution environment

(Up to) 240 general-purpose registers

(Up to) 14 texture units

2 index registers

Single address space for general-purpose registers, texture
units, indirect addressing

64K program address space

Program counter



General-purpose registers

128 bit wide, treated as 4-component vectors by most
instructions

Data is passed from and to the rest of the graphics pipeline
through these



Instructions

Typical instructions:

One or two source operands

One destination operand

Destination write mask to selectively write components of
destination operand

Example: Double the first and third component of register 1

add 1.xz, 1, 1



Dot products

Common in shaders

Can be used for other tasks: Matrix multiplication, Taylor
series

Map well to a pipeline that has three execution stages



Gliederung

1 Introduction

2 Architecture

3 Implementing OpenGL

4 Adaptions for use in embedded systems



OpenGL

Drivers generate shaders for fixed-function pipeline

Legacy pseudo-assembly languages’ functionality is a subset of
GLSL functionality

GLSL has many built-in functions



Example - cosinus

cos(c) =
∞∑
i=0

(−1)n x2i

(2i)!
(1)

cos(x) = t(g(
x

2π
+

1

2
)− 1

2
) (2)

g(x) = x − bxc (3)

t(x) =
∞∑
i=0

(−1)n (2πx)2i

(2i)!
≈

4∑
i=0

(−1)n (2πx)2i

(2i)!
= s(x) (4)

cos(x) ≈ a(x) := s(g(
x

2π
+

1

2
)− 1

2
) (5)



Cosinus approximation error



Gliederung

1 Introduction

2 Architecture

3 Implementing OpenGL

4 Adaptions for use in embedded systems



OpenGL ES

OpenGL for embedded systems

Removes legacy functionality

Removes highend features



Architecture

Often no hardware-accelerated vertex processing

Reduced (half) precision is sufficient for fragment shaders

64 bit wide general-purpose registers

Indirect adressing and integer support not mandatory



Texturing

Moving functionality to shaders results in simpler texture units

Texture filtering (texture units support bilinear filtering,
shader does trilinear filtering)

Calculation of level-of-detail paramater from texture
coordinates derivative’s


	Introduction
	Architecture
	Implementing OpenGL
	Adaptions for use in embedded systems

