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Efficient Calling Conventions for Irregular Architectures
Anonymous Author(s)

Abstract
We empirically evaluated thousands of different C calling conven-
tions for irregular microcontroller architectures, and found poten-
tial for improvement over the calling conventions previously used
in the Small Device C Compiler (SDCC).The improvements in code
size and speed are substantial enough that SDCC made changes to
its default calling convention, breaking ABI compatibility.
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1 Introduction
Calling convention overhead can contribute significantly to code
size, power consumption and execution time. Often, calling con-
ventions are chosen per architecture or per operating system early
on, and then kept to not break binary compatibility. For many sys-
tems, attempts to change the calling convention, and thus the ap-
plication binary interface (ABI) would meet with substantial oppo-
sition from existing users. Thus research on reducing calling con-
vention overhead has focused on choosing a calling convention for
some individual functions as a link-time optimization [1, 3]. That
research looked into calling conventions for ARM, a RISC archi-
tecture. RISC architectures typically have a relatively large num-
ber of general-purpose registers that can be used interchangeably.
In microcontrollers, sometimes the opposite is found: Accumula-
tor architectures, which have one accumulator, and use memory
operands otherwise. For accumulator architectures, compilers of-
ten use a number of memory locations as pseudoregisters, so from
the compiler perspective the use of pseudoregisters can be handled
similarly to registers in RISC architectures. Such architectures are
considered compiler-friendly, as traditional graph-coloring regis-
ter allocators can deal well with them. Calling conventions typi-
cally pass return values and many function parameters in regis-
ters or pseudo-registers; since the registers or pseudo-registers can
be used interchangeably, it doesn’t really matter which register is
used for which purpose, it onlymatters if there are enough of them.

However, there are also irregular architectures with a rather
small number of registers, with instructions often being available
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for some subset of registers only, or instruction size and execu-
tion time depending on which registers the operands reside in. Re-
cently, register allocators that can deal well with such architec-
tures have been developed [6], which might help make them more
popular again. For such architectures, the choice of an ABI can be
a quite interesting problem.

The free [8] Small Device C Compiler [4] targets various 8-bit
architectures common in microcontrollers (µC), as well as some
historic 8-bit architectures relevant to the retrocomputing and ret-
rogaming communities. This includes many highly irregular archi-
tectures. Typical SDCC users are highly sensitive to code size. Use
of precompiled libraries written in C is uncommon (apart from the
standard library that ships with SDCC), but some users, as well as
downstream projects that bundle SDCC into development kits for
specific systems with their peripherals have a large base of hand-
written assembler code.

We looked into three aspects of the calling convention: Use of
registers for passing parameters, use of registers for passing return
values, cleanup of stack parameters by caller vs. callee. By evaluat-
ing a large number of calling conventions, for many architectures
(STM8, Z80, Z180, Z80N, Rabbit 2000, Rabbit 2000A, Rabbit 3000A,
TLCS-90, SM83) targeted by SDCC, we found potential for substan-
tial improvement. For two of the architectures our research led to
SDCC changing the default calling convention. The new ABI will
be used by default in the upcoming SDCC 4.2.0 release. For the
other architectures, such a change is still under discussion.

2 STM8
The STM8 is a relatively recent and common µC architecture. It
has an 8-bit accumulator a and two 16-bit registers x and y. Most
instruction have one register operand and one memory operand.
While most instructions available for x are also available for y,
many of them are 1 byte longer for y. Besides SDCC, which does
not use pseudoregisters, there are competing Raisonance, Cosmic
and IAR compilers targeting this architecture.

The calling convention used by SDCC so far passes all param-
eters on the stack, passes 8-bit return values in a, 16-bit return
values in x, 24-bit and 32-bit return values in x and y. Stack pa-
rameters are always cleaned up by the caller. This convention was
chosen, since it is simple and works for all functions, including
those with variable arguments. The other compilers pass 8-bit re-
turn values in a, 16-bit return values in x, and 32-bit return values
in pseudoregisters.They, too have the caller clean up stack parame-
ters. For functions without variable arguments, Raisonance passes
the first argument in a, if it has 8 bits, in x if it has 16 bits, if the
first is in a, and the second has 16 bits, it is passed in x, if the first
is in x, and the second has 8 bits, it is passed in a, while further
arguments are passed on the stack. For functions without variable
arguments, Cosmic passes the first argument in a, if it has 8 bits, in
x if it has 16 bits, while further arguments are passed on the stack.
For functions without variable arguments, IAR passes the first ar-
gument that has 8 bits in a, the first argument that has 16 bits in x,
while pseudoregisters are used for further and larger arguments.
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Users of the STM8 often try to keep their code portable between
compilers, and rarely use hand-written assembler code. They tend
to be highly sensitive to code size and speed. This makes a good
environment for a change in the ABI motivated by reducing over-
head.

3 Z80 and related
The Z80 is an old processor architecture found in many older com-
puter and video game systems. It has an 8-bit accumulator a, 8-bit
registers b, c, d, e, h, l which can also be used as 16-bit registers
bc, de, hl and 16-bit registers ix, iy. Most instructions have a as
one operand, while the other operand is in another 8-bit register or
in memory pointed to by hl, ix or iy. Derived architectures with
the same register set, but added instructions include the Z180 and
Z80N, which only have a few additional instructions and the eZ80,
Rabbit 2000, 3000, 3000A and TLCS-90 which differ substantially in
their instruction set from the original Z80. In particular, the eZ80,
Rabbit and TLCS-90 have additional 16-bit load instructions. An-
other architecture derived from the Z80 is the SM83, which was
once common in Japanese home appliances such air conditioners
and TV remotes, and is commonly known for being the architec-
ture of the CPU used in the Game Boy video game system. Com-
pared to the Z80, it lacks the registers ix and iy, as well as many
instructions, but it also has a few instruction not present in the
original Z80. Competing compilers for these architectures existed
historically, but have become less relevant.

The calling convention used by SDCC so far passed all param-
eters on the stack. For SM83, it passed 8-bit return values in e,
16-bit return values in de, 32-bit return values in hlde. For the
other Z80-related targets it passed 8-bit return values in l, 16-bit
return values in hl, 32-bit return values in dehl. Stack parameters
were always cleaned up up by the caller. The original rationale for
the choice of the calling convention for Z80 (the oldest version of
SDCC we found, SDCC 2.2.0 from 20 years ago already supports
the Z80, and the calling convention hasn’t changed since; we have
been unable to contact the port maintainer from back then) and
SM83 is no longer known, but since they are different one can as-
sume that it was a deliberate decision. For the other architectures,
SDCC just reused the convention from the Z80. The other compil-
ers used a variety of different calling conventions.

Some of the users of these architectures are highly sensitive to
code size or speed. On the other hand, many also have a substantial
body of hand-written assembler code. There are big downstream
projects (in particular Z88DK and GBDK), that bundle SDCC with
further tools and hand-written assembler libraries.

4 Analysis
Before looking into calling conventions we wanted to know the
common use cases that potentially have a big impact on the com-
piled programs.

In C, the calling convention can vary depending on the type of
the function. Typically, calling conventions take into account only
some aspects, such as the return type and argument types width
in bit and them being integers vs. pointers vs. floating-point. To
get some quantitative data on the relevance of different function
types, we created a version of SDCC that outputs data on the func-
tion types and calls to them. Since we wanted data that is relevant

to code size and speed, we analyzed the intermediate code at regis-
ter allocation time: function calls that are inlined do not show up
in the data, but calls to helper functions used by the compiler (e.g.
for software-implemented floating-point operations on hardware
without floating-point support) do. A minor drawback of this ap-
proach is that we cannot distinguish between types that behave
identically, but are different types in C. In particular, C char be-
haves the same as either unsigned char or signed char, but is a
different type.

From analyzing various benchmarks and the standard library,
we found that the most commonly called function types are float
function (float, float) (very common in floating-point sup-
port functions), int function (char *, ...) (e.g. printf from
the standard library), int function (int, int) (various func-
tions both in user code and the standard library), bool function
(float, float) (common in floating-point support functions), int
function (char *, char *, unsigned-int), int function (char
*) (common in string handling, e.g. strlen from the standard li-
brary).Themost common function types are void function (void),
int function (int) and float function (float).

5 Experiments
To easily evaluate various calling conventions, we created a branch
of SDCC that uses nearly no assembler code in the standard li-
brary by replacing hand-written assembler functions with generic
C code. We also introduced infrastructure that makes it easy to
change the calling convention on a per-function basis. We evalu-
ated a large number of calling conventions for each architecture,
considering three aspects: Choice of registers for return value de-
pending on the size of the return value, choice of registers and
stack for parameters, choice of caller vs. callee cleanup of stack
parameters depending on the size of the return value and on the
type of the first parameter. To ensure that the results were not
overoptimized to a few common functions, we also repeated the
experiments choosing the calling convention for the most com-
monly called function types independently from the rest. We com-
piled four benchmarks suitable for execution on the small systems
targeted by SDCC (Whetstone 1.2 [2], Dhrystone 2.1 [9], Core-
mark 1.0 [5], stdcbench 0.7 [7]) for each calling convention. For
the calling conventions that gave the best results in these exper-
iments, we then created a branch of SDCC that has all standard
library functions that were implemented in assembler rewritten to
match the new calling convention. For each of STM8, Z80, SM83,
Rabbit 3000A, eZ80 and TLCS-90 we evaluated a few thousand dif-
ferent calling conventions that way. All compilation was done us-
ing the default optimization goal and strong optimization (using
the same options as are used for the compilation of the standard li-
brary that comes with SDCC). The default optimization goal tends
to favor code size over speed, (though it doesn’t go as far as the
compiler option --opt-code-size does).

For STM8, we considered any 8-bit register (a, upper and lower
halves of x and y) for 8-bit return values, any 16-bit register for 16-
bit return values, any order of the 2 16-bit registers for 32-bit return
values. We considered any 8-bit register for 8-bit arguments, and
any 16-bit register for 16-bit arguments. Early, it became clear that
code generation becomes quite complicated, and has high over-
head for calls through function pointers, if there is no free 16-bit
register at the time of the call; the experiments also showed that
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having 16-bit arguments in x provided a substantial advantage, so
y would take the role of that free register; this also harmonizes
well with the use of y as a frame pointer by SDCC in functions
that have more than 256 Bytes of local variables. For return val-
ues, the results showed that the previous convention is good; while
some other choices of registers matched the code size and speed
of the old one, none surpassed it. For arguments, the convention
that worked best turned out to be the one already used by the com-
peting Raisonance compiler: Pass the first argument in a, if it has
8 bits, in x if it has 16 bits, if the first is in a, and the second has
16 bits, it is passed in x, if the first is in x, and the second has 8
bits, it is passed in a, while further arguments are passed on the
stack. These choices work well for both code size and speed. On
the other hand, when it comes to the cleanup of stack parameters
by caller vs. callee, there is a trade-off: in general, caller cleanup is
faster, while callee cleanup gives smaller code. Doing the cleanup
in the caller requires extra effort in code size and speed, but the
size overhead happens only once as opposed to every call site; this
overhead if bigger if there are few free registers at the end of the
call, i.e. for functions with large return values. Also, callee cleanup
can hinder tail call optimization.The use of callee cleanup for func-
tions that return void or a value of up to 16 bits (so that one 16-bit
register is still free), and for functions where both the return value
and the first parameter are of type float looks like a good choice:
for the former functions the overhead is small, for the latter func-
tions, due to the STM8 not having hardware floating-point support,
the extra runtime is rather small relatively to the effort required by
floating-point computations inside the function.

We compiled the benchmarks for the STM8AF board from the
STM8A-Discovery kit. The main results can be seen in Figure 1a
for code size and Figure 1b for speed. For each benchmark, the left
bar compares a variant of the new convention that has the caller
always restore the stack, to the old convention in the SDCC vari-
ant without assembler-implemented library functions. The middle
bar compares the new convention to the old convention in the
SDCC variant without assembler-implemented library functions.
The right bar compares the new convention to the old convention
as it will be in the next SDCC release (i.e. both with the assembler-
implemented library functions). In Whetstone, having the callee
clean up stack parameters saves code size at the cost of code speed.
In summary, we see that the change of the calling convention brings
substantial improvements in both code size and speed, which is not
surprising given the ad-hoc way the old calling convention had
been chosen.

For Z80, SM83, Rabbit 3000A, eZ80 and TLCS-90, we considered
any 8-bit register for 8-bit return values, any 16-bit register other
than ix and iy for 16-bit return values, any order of 16-bit registers
other than ix and iy for 32-bit return values. We considered any
8-bit register for a 8-bit arguments, and any 16-bit register other
than ix and iy for 16-bit arguments, any order of 16-bit registers
other than ix and iy for 32-bit arguments. We excluded ix and iy
since some systems reserve their use for a BIOS or OS, and SDCC
thus needs to be able to generate code that does not use themwhen
requested by command-line options.

Surprisingly, we found that the best calling conventions differed
a lot from the previously used ones. For Z80, we found that having
8-bit return values in a, 16-bit return values in de, 32-bit return
values in hlde worked best, a calling convention very close to the
one SDCC used for SM83. For the arguments, the best choice was

to have the first argument in a if it has 8 bits, in hl, in hlde if it
has 32 bits. If the first argument is in a, and the second has 8 bits,
it is passed in l. If the first argument is in a or hl, and the sec-
ond has 16 bits, it is passed in de. Further arguments are passed
on the stack. Regarding caller vs callee cleanup the same choice as
for STM8 works well. For SM83, we found that having 8-bit return
values in a, 16-bit return values in bc, 32-bit return values in debc
worked best. For the arguments, the best choice was to have the
first argument in a if it has 8 bits, in de if it has 16 bits, in debc
if it has 32 bits. If the first argument is in a, and the second has 8
bits, it is passed in e, if the second has 16 bits, it is passed in de. If
the first argument is in de, and the second has 8 bits, it is passed
in a, if the second has 16 bits, it is passed in bc. For SM83, callee
cleanup is a good choice for all functions (the register pair hl is not
used for the return value, and thus free at the function end, which
together with the SM83 add sp, #d stack-pointer adjustment in-
struction allows to generate efficient code for callee cleanup). For
Rabbit 3000A, eZ80 and TLCS-90, we found that having 8-bit re-
turn values in a, 16-bit return values in hl, 32-bit return values in
hlde worked best. For the arguments, the best choice was to have
the first argument in a if it has 8 bits, in hl, in hlde if it has 32 bits.
If the first argument is in a, and the second has 8 bits, it is passed
in l. If the first argument is in a, and the second has 16 bits, it is
passed in hl. If the first argument is in hl or hlde, and the second
has 8 bits, it is passed in a.

We compiled the benchmarks for the Z80-MBC2 and RCM3319,
single-board computers using the Z80 and Rabbit 3000A.The main
results can be seen in Figures 1c and 1e for code size and Figures 1d
and 1f for speed. The meanings of the various bars are the same as
for STM8 above (though unlike for STM8, there has not yet been a
final decision by the SDCC project if the calling conventions pre-
sented here will be the ones used in the future). Again, we see
a substantial improvement in code size and speed, which here is
more surprising than for STM8. However, for Whetstone, the new
convention gives us a speed regression in whetstone, even when
the caller cleans up the stack parameters. This is apparently due
to the register allocator having a bit more freedom regarding the
register parameters, and the freedom is used for optimizations for
code size at the cost of some speed.

We expect that over time, the advantages for the new conven-
tion will become even a bit stronger: the peephole optimizer, an
optimization stage after code generation, had its current ruleset
written when there was only the old calling convention, so there
is potential for improvement taking account the code that code
generation commonly generates for the new convention.

An open question that has delayed consensus on the future call-
ing convention for Z80, Z180, Z80N, Rabbit 2000, Rabbit 2000A,
Rabbit 3000A, eZ80 and TLCS-90 which was resolved recently was
that of 8-bit parameters on the stack being passed as 8-bit vs. 16-
bit values. Since the Z80, and related have 16-bit push instructions
only, on the caller side a 16-bit push saves code size and speed, but
it comes at the cost of stack space. This was thus perceived as a
question of code size and speed on on ehand versus stack space
ont eh other hand. However, further experiments we did recently
resolved this showing that practically, passing these as 8-bit values
tends to be better even for code size and speed: having the parame-
ters closer to the current stack pointer allows some extra optimiza-
tions on stack accesses in the callee, the peephole optimizer can
sometimes use a single 16-bit push to pass two 8-bit arguments,
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Figure 1. Experimental results: Code size and speed impact of changing the calling convention
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and stack cleanup can be a bit more efficient. It now looks like
SDCC will change to make the new convention for Z80, Z80N and
Z180 the default soon.

6 Future Work
While we looked into efficient calling conventions for multiple ar-
chitectures, there are more such architectures, for which similar
experiments could be done, both in SDCC and in other compilers.
The latter could also include looking at compilers for languages
other than C.

We also expect that our experiments should be redone in about
10 years, as we expect future ISO C standards to change the way C
is used, including what is required in calling conventions, as future
standards are likely to introduce feature that require support in the
calling convention (e.g. lambda, closures, integer types of arbitrary
width in bits, a separate error reporting channel). Choosing an ef-
ficient convention for these new features will require data from
their use, and thus some years of user experience with the new
features.

SDCC changed the default calling convention for the STM8 and
SM83, but there is still an ongoing discussion regarding the other
targets. While our research showed clear advantages to such a
change, there is also a cost to breaking binary compability. A re-
meaining open question is if the advantage in code size and speed
of having different calling conventions for Z80, Z180, Z80N on one
side vs. Rabbit 2000, Rabbit 2000A, Rabbit 3000A, eZ80, TLCS-90 on
the other is worth the extra maintenance burden on maintainers
of cross-platform liberies written in assembler (and on SDCC de-
velopers) of having to learn two different calling conventions.

7 Conclusion
For irregular architectures, the choice of a calling convention, in-
cluding which registers to use for retrun values and parameters
makes a big difference in calling convnetion overhead. Even for es-
tablished compilers, the potential for furher improvement can be
substantial enough to make it worth breaking the ABI by changing
the calling convention.
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